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SurpPRESSION OF WAVES IN SLOTTED- WALLED CHANNEL®

Errata

The following corrections should be made to the original paper:

Page 399, line 9: Should read (915 mm) instead of (913)

Page 403, paragraph 2, line 3: Should read “*beach’” instead of **bench’

Page 404, paragraph 1, line 15: Should read (0.75 m/s) instead of (75 m/s)
Page 405, Fig. 5, caption: Should read ‘‘Wave Amplitude on Each Side of
Screen (1 in. = 25.4 mm; 1 ft = 0.305 m) :

Page 407, paragraph 1, line 5: Should read (61 cm) instead of (6 cm)

Page 407, line 2 from bottom: Should read “Eqs. 5 and 7' instead of Eqs.
4und 6™

Page 408, Eq. 14: Should read (o — kV)? instead of (¢ —KV)?

Page 408, line 1 after Eq. 14: Should read *“Eqs. 12 and 14" instead of ‘*Egs.
1T and 13"

Page 408, line 1 after Eq. 15: Should read *“‘Eq. 15" instead of “‘Eq. 14"

Finite ELEMENT SoLUTION OF SAINT-VENANT EQUATIONS P
Discussion by Danny L. Fread,> M. ASCE

The authors have made a needed contribution 1o the litérature with their
presentation of a finite element solution of the onc-dimensijonal unsteady flow
cquations. The following comments are concerncd with the authors’ *“‘case 2"
application, wherein they have made some statcmients in their comparison of
the finite element and four-point finite difference techniques which require some i
further consideration.

First, the authors state that the downstream stage hydrograph generated by
the finite clement method using 12-hr time steps lies closer to the curve based
on a weighted four-point finite difference **box'* scheme using 0.5-hr time steps
than to the curve based on the same finite difference solution using 12-hr time
steps. This, they suggest, indicates that the finite clement method is somewhat ;
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more accurate than the finite diffcrence method for this particular example.
This is a questionable conclusion, since the authors have use a downstream
boundary condition in the finite element solution different from that used in
the finite difference solution. The authors used a single-value rating curve based
on Manning’s equation, with the channel bottom slope used as the energy slope.
Their solution, particularly at the downstream boundary, can be different from
that obtained using a loop rating curve based on the Manning equation with
a variable energy slope to account for unsteady nonuniform flow as used in
the finite difference solution. This is indicated in the authors’ Fig. 5, where,
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FIG. 8.—Effect of Channel Slope and
Downstream Boundary Rating Curve on
Computed Downstream Hydrographs

FIG. 7.—~Typical Single-Value and Loop
Rating Curves

100 |-
< 5
z
2
< S0
>
w
o - -
¥ .25
I - - LOOP RATNG 2ITERATIONS OF
« = = o SINGLE-VALUE RATING NeR JAETHOD
seeeves LOOP RATING 1 ITERATION OF
N-R METHOD
1 | 1 L n
2 4 é [ 10 12

AT(he) m——eep

FIG. 9.—Effect of Time Step on Root Mean Square Deviation of Downstream
Hydrographs for Loop and Single-Value Rating Curves (Loop Rating Curve with 0.5-hr
Time Steps Used as Standard for Comparison)

on the rising limb of the stage hydrograph, the finite element solution using
12-hr time steps exceeds that of the finite difference solution using {2-hr time
steps and, on the falling limb, the relationship is reversed. This relationship
is identical to that which would result when using the two different boundary
conditions, as indicated in Fig. 7 by the relative magnitudes of the stages,
h,. h;, and h,,, associated with the rising limb (loop rating). falling limb (loop
rating), and single-value rating, respectively,

The difference in the hydrographs due to the type of rating curve used at
the downstream boundary is sensitive to the channel bottom slope and the
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rate of change of the hydrograph. For the particular hydrograph examined by
the authors, which has a time to peak of 48 hr and a 0.5-hr time step, the
root mean square deviation between the two hydrographs (see Fig. 8) is 0.358
£t (0.109 m) when the channel bottom slope, S, is 1.0 ft/mile (0.0001894 ft/f1);
however, when the bottom slope is reduced to 0.5 ft/mile (0.0000947 ft/ft},
the root mean square deviation increases to 1.002 ft (0.306 m). A more complete
presentation of the effects of slope and rate of change of flow on hydrographs
determined from single-value and loop rating curves is given by the writer (22,
pp. 30-35).

The computed downstream hydrograph is seusitive to the size of time step.
Using the loop rating curve with 0.5-hr time step as the standard for comparison,
the root mean square deviations of other downstream hydrographs with different
size time steps are shown in Fig. 9. The root mean square deviation associated
with the single-value rating curve is less than that of the loop rating curve
for time steps in excess of 4 hr. The root mean square values for 12-hr time
steps are 1.094 ft (0.334 m) and 0.971 ft (0.296 m) for the loop and single-value
rating curves, respectively. Thus, by using the single-value rating curve with
12-hr time steps, as the authors have done, the conputed downstream hydrograph
generated by the four-point finite difference scheme deviates less from the
standard hydrograph than that computed with 12-hr time steps and a loop rating
curve. This indicates a compensating effect of the deviations arising from the
use of a single-value rating rather than a loop rating boundary condition and
the deviations due to numerical truncation errovs associated with the time step
size. The compensating effect resulted in, at least a portion of, the apparent
increase in accuracy, which the authors observed; therefore, it is questionable

if the *“*case 2" example illustrates the superior accuracy of the finite elcment

method as concluded by the authors.

Second, the authors state that the Newton-Raphson method for solving the
system of equations associated with the weighted four-point finite difference
“pox’’ scheme is generally a more time-consuming process than the predictor-
corrector method used in the authors’ finite clement solution. The cssential
difference in computational time required by the two solution techniques is
the number of times the system of equations is solved at each time step. The
number of iterations made in the Newton-Raphson procedure can be controlled
through ecither the selected convergence tolerance criteria or the specified number
of iterations. Since the predictor-corrector method requires two complete solutions
of the system of equations at each time step, the writer controlled the Newton-
Raphson method to iterate twice at each 12-hr time step, and the gencrated
hydrograph had a root mean square deviation from the standard hydrograph
of 1.094 ft (0.334 m). When as many as 10 iterations were used at each time
step, the root mean square value remained the same. Thus, solving the system
of equations more than twice does not produce an increase in the accuracy;
therefore, in this example, the Newton-Raphson method is comparable to the
predictor-corrector method in computational requircments.

The authors mention that instability was encountered when only the predictor
part of the scheme was used. The writer also ubserved this when the Newton-
Raphson method was applied only once each time step. However, when the
time step was reduced to 6 hr, the solution became stable, although the root
mean square value was twice (see Fig. 9) that obtained when the Newton-Raphson

meth.od was applied twice at each 6-hr time step. The application of only the
pch:ctor part or the single iteration Newton-Raphson method is essentially
equivalent to linear finite difference schemes, e.g., Chen, et al. (21). The stability
fmd accuracy of each of the aforementioned time-saving solution techniques
is dependent on the size of time step used in relation to the degree of nonlinearity
of the flow over the time step interval, which, in the example, is appreciable
for a time step of 12 hr. '

Also, the exponent associated with the natural base e in Eq. 32 should be

[ —t/a]1/(v - D).
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